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Figure 1. The mitomycin family of nat
The tetracyclic core of the mitomycin family of natural products has been formed in one step from an acy-
clic precursor via a reductive aminocyclization reaction. Additionally, the eight-membered benzazocine
can be prepared without the need for prior activation of the aniline. Construction of a mitomycin K ana-
logue lacking the C9a methoxy moiety is also reported herein.
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The mitomycin family of natural products (Fig. 1) have been of
interest to the scientific community since their isolation over
50 years ago.1 Members of this family exhibit potent activity
against a variety of cancer cell lines, and were found to be partic-
ularly active against solid tumors.2 The mode of action of these
compounds arises from their ability to form interstrand DNA–
DNA3 as well as DNA–protein4 covalent cross-links. Mitomycin C
(Fig. 1) has been widely used clinically for over 40 years, and is still
routinely employed today.5

These molecules present a significant synthetic challenge due to
their densely functionalized nature, chemical lability as well as the
difficulty in maintaining the vulnerable structural elements (i.e.,
aziridine, quinone, and exo-methylene) as the synthesis unfolds.
Despite the numerous reported synthetic efforts toward the mito-
ll rights reserved.
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ural products.
mycins, only Kishi6, Fukuyama7, Danishefsky8, and Jimenez9 have
been successful in completing total syntheses. It is important to
note that all the syntheses mentioned above delivered racemic
products and there exists no enantioselective total synthesis of
any of the mitomycins reported to date.

Our research program has been focused on the development of an
asymmetric total synthesis of the mitomycins which was a natural
out-growth of our recently completed asymmetric total synthesis
of (+)-FR900482.10 These efforts are fueled in part by our interest
in both the biosynthesis and mode of action of these compounds.11

Herein we report efficient formation of the tetracyclic core of the
mitomycins via a reductive aminocyclization reaction.

Previously, we reported the synthesis of benzazocines with the
mitomycin substitution on the aromatic ring via an intramolecular
Mitsunobu cyclization reaction.12 We reported that prior activation
of the aniline as the corresponding sulfonamide or carbamate was
requisite for Mitsunobu cyclization to occur (Scheme 1). Through
this method, benzazocines and benzazocanes containing all the
key elements of the mitomycins were efficiently obtained. How-
ever, conversion of these benzazocanes to the natural products
proved to be difficult.

As part of our continuing efforts to access this family of natural
products, a new strategy was developed. This strategy employed
the use of benzyl ethers as protecting groups on the arene ring,
as well as installation of the exocyclic methylene prior to cycliza-
tion (Scheme 2). The synthesis commenced by coupling of nitro
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Scheme 1. Reagents and conditions: (a) (CH3)2NCON@NCON(CH3)2 (1.5 equiv),
PBu3 (1.8 equiv), toluene, rt, 6 h; 85%.
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Scheme 2. Reagents and conditions: (a) 1 (2.0 equiv), 2 (1.0 equiv), ZnCl2

(1.5 equiv), NaHMDS (2.0 equiv), DMF, �45 �C, 2 h, 85%; (b) Dess–Martin
(1.6 equiv), CH2Cl2, rt, 2 h, 98%; (c) formalin (112 equiv), LiOH (0.4 equiv), THF/
water (20:3), rt, 20 h, 99%; (d) DDQ (1.3 equiv), CH2Cl2/water (95:5), rt, 2 h, 92%; (e)
MsCl (1.3 equiv), Et3N (3.0 equiv), 0 �C, 30 min, 85%; (f) CeCl3�7H2O (5.0 equiv),
NaBH4 (3.0 equiv), 0 �C, 30 min, 92%; (g) Zn dust (5.0 equiv), NH4Cl (10.0 equiv),
acetone/water (4:1), rt, 3 h, 99%.
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Scheme 4. Reagents and conditions: (a) MsCl (1.5 equiv), Et3N (3.0 equiv), 0 �C,
30 min, 53%; (b) Zn dust (5.0 equiv), NH4Cl (10.0 equiv), acetone/water (4:1), rt, 3 h,
55%; (c) 10% Pd/C (120 wt.%), Et3N (6.0 equiv), EtOAc, H2, rt, 30 min, then O2, 50%.
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arene 113 and aziridine aldehyde 214, followed by oxidation of the
resultant alcohol (obtained as a 2:1 mixture of diastereomers R:S)
to ketone 3. Methylenation and removal of the PMB ether with
DDQ proceeded in excellent yield over two steps to provide pri-
mary alcohol 4. Conversion of alcohol 4 to the corresponding mes-
ylate and reduction of the ketone under Luche conditions gave
secondary alcohol 5 in high yield as a single diastereomer. Reduc-
tion of the nitro group using zinc dust did not provide the expected
aniline 6, but rather gave benzazocine 715 in near quantitative
yield as the product of a reductive aminocyclization reaction. To
the best of our knowledge, this is the first example of a cyclization
reaction in this family of compounds which proceeds without the
need for prior activation of the aniline.

Having found an efficient method for formation of benzazocine
7, we were interested in examining the utility and scope of this
transformation. Specifically, we investigated the possibility of
forming the tetracyclic core of the mitomycins in one step from
an acyclic precursor via this newly discovered reductive aminocy-
clization reaction. Accordingly, ketone 3 was transformed to bis-
mesylate 8 in four straightforward steps consisting of PMB ether
removal, mesylation, reduction of the ketone, and a second mesy-
lation (Scheme 3). Treatment of bis-mesylate 8 under identical ni-
tro reduction conditions furnished tetracyclic indoline 9 in 53%
yield. Attempted conversion of indoline 9 to the mitomycins is
now in progress.
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Scheme 3. Reagents and conditions: (a) DDQ (1.3 equiv), CH2Cl2/water (95:5), rt,
2 h, 85%; (b) MsCl (1.5 equiv), Et3N (3.0 equiv), 0 �C, 30 min, 53%; (c) CeCl3�7H2O
(5.0 equiv), NaBH4 (3.0 equiv), 0 �C, 30 min, 93%; (d) MsCl (1.5 equiv), Et3N
(3.0 equiv), 0 �C, 30 min, 75%; (e) Zn dust (5.0 equiv), NH4Cl (10.0 equiv), acetone/
water (4:1), rt, 3 h, 53%.
With indoline 9 in hand, we decided to pursue the synthesis of
mitomycin K using the same reaction, with prior installation of the
C10 exocyclic olefin. Accordingly, mesylation of alcohol 5 under
standard conditions provided the aminocyclization precursor bear-
ing the exocyclic olefin (Scheme 4). Reductive aminocyclization
conditions used previously did provide tetracycle 10 without any
isomerization of the exocyclic olefin to the corresponding indole
(mitosene) adduct.16 Treatment of tetracycle 10 under hydrogena-
tion conditions gave quinone 11 in moderate yield. Quinone 11
comprises the core skeleton of mitomycin K, lacking only the C9a
methoxy group. Installation of the requisite methoxy moiety may
be accomplished by an allylic C–H activation strategy, and efforts
in this vein are in progress.

In summary, benzazocines were synthesized in high yield by
use of a reductive aminocyclization reaction without the need for
prior activation of the aniline. The tetracyclic core of the mitomyc-
ins was also accomplished in a single step from an acyclic precur-
sor using this methodology. This strategy was used in formation of
the tetracyclic indoline compound 9, as well as the core structure
of mitomycin K bearing an exocyclic olefin (i.e., 10).
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D þ 14:6 (c = 2.00, CHCl3); 1H NMR (300 MHz, CDCl3) d TMS: 2.14 (3H, s),
3.28 (1H, dd, J = 4.5, 2.1 Hz), 3.36 (1H, dd, J = 12.9, 2.1 Hz), 3.42 (1H, dd,
J = 4.5, 2.7 Hz), 3.65 (3H, s), 3.82 (3H, s), 4.21 (1H, d, J = 12.9 Hz), 4.58 (1H,
m), 4.70 (1H, d, J = 11.4 Hz), 5.09 (1H, m), 5.28 (1H, d, J = 2.1 Hz), 5.92 (1H,
d, J = 2.4 Hz), 7.57–7.35 (10H, m); 13C NMR (75 MHz, CDCl3) d 10.0, 36.8,
44.4, 46.1, 51.1, 53.7, 60.9, 69.9, 72.2, 74.2, 120.1, 127.7, 127.9, 128.0, 128.1,
128.4, 128.5, 128.6, 128.7, 128.8, 128.9, 129.0, 137.7, 137.9, 138.6, 142.9,
145.2, 145.3, 145.5, 162.6; IR (neat) 3030, 2928, 1726, 1634, 1498,
1279 cm�1; HRMS (FAB) m/z calcd for C30H30N2O5 (M+H)+ 498.21, found
498.21.


